Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Biomolecules ; 13(4)2023 04 20.
Artículo en Inglés | MEDLINE | ID: covidwho-2291408

RESUMEN

Atherosclerosis is a progressive vascular multifactorial process. The mechanisms underlining the initiating event of atheromatous plaque formation are inflammation and oxidation. Among the modifiable risk factors for cardiovascular diseases, diet and especially the Mediterranean diet (MedDiet), has been widely recognized as one of the healthiest dietary patterns. Olive oil (OO), the main source of the fatty components of the MedDiet is superior to the other "Mono-unsaturated fatty acids containing oils" due to the existence of specific microconstituents. In this review, the effects of OO microconstituents in atherosclerosis, based on data from in vitro and in vivo studies with special attention on their inhibitory activity against PAF (Platelet-Activating Factor) actions, are presented and critically discussed. In conclusion, we propose that the anti-atherogenic effect of OO is attributed to the synergistic action of its microconstituents, mainly polar lipids that act as PAF inhibitors, specific polyphenols and α-tocopherol that also exert anti-PAF activity. This beneficial effect, also mediated through anti-PAF action, can occur from microconstituents extracted from olive pomace, a toxic by-product of the OO production process that constitutes a significant ecological problem. Daily intake of moderate amounts of OO consumed in the context of a balanced diet is significant for healthy adults.


Asunto(s)
Aterosclerosis , Olea , Adulto , Humanos , Aceite de Oliva/farmacología , Aceites de Plantas/farmacología , Factores de Riesgo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/prevención & control
3.
4.
Biomed Pharmacother ; 153: 113456, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: covidwho-1966381

RESUMEN

Dexamethasone acts as an immunosuppressive drug and has been used recently in the management of specific coronavirus disease 2019 (COVID-19) cases; however, various adverse effects could limit its use. In this work, we studied the mitigation effects of black pepper oil (BP oil) on glycemic parameters, dyslipidemia, oxidative and nitrosative stress and pancreatic fibrosis in dexamethasone-treated rats. Animals were divided into five groups that were treated with vehicle, dexamethasone (10 mg/kg, SC) or black pepper oil (BP oil, 0.5 mL, or 1 mL/kg) or metformin (50 mg/kg) plus dexamethasone for 4 consecutive days. Serum insulin, blood glucose, total cholesterol, triglycerides, and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) were higher in the dexamethasone group vs the control group and decreased in BP oil and metformin groups relative to the dexamethasone group. Pancreatic nitric oxide, inducible nitric oxide synthase and malondialdehyde levels were increased in the dexamethasone group vs the control group and decreased in BP oil and metformin groups relative to the dexamethasone group. Pancreatic endothelial nitric oxide synthase and reduced glutathione were declined in the dexamethasone group vs the control group. They were increased in BP oil and metformin groups relative to the dexamethasone group. Moreover, the pancreatic islets diameter and collagen deposition were assessed and found to be higher in the dexamethasone group vs the control group. BP oil and metformin groups showed to regress this effect. In conclusion, BP oil may alleviate hyperglycemia, hyperinsulinemia, insulin resistance, dyslipidemia and pancreatic structural derangements and fibrosis by suppressing oxidative stress, increasing endogenous antioxidant levels, modulating nitric oxide signaling, preventing pancreatic stellate cells transition and collagen deposition.


Asunto(s)
Dexametasona , Metformina , Páncreas , Piper nigrum , Aceites de Plantas , Animales , Glucemia , Dexametasona/efectos adversos , Dexametasona/farmacología , Dislipidemias/tratamiento farmacológico , Fibrosis , Resistencia a la Insulina , Metformina/farmacología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/metabolismo , Estrés Oxidativo/efectos de los fármacos , Páncreas/efectos de los fármacos , Páncreas/patología , Piper nigrum/química , Aceites de Plantas/farmacología , Aceites de Plantas/uso terapéutico , Ratas , Ratas Wistar , Tratamiento Farmacológico de COVID-19
5.
Molecules ; 27(10)2022 May 21.
Artículo en Inglés | MEDLINE | ID: covidwho-1875716

RESUMEN

Nowadays, many individuals, whether healthy or diagnosed with disease, tend to expose themselves to various easily accessible natural products in hopes of benefiting their health and well-being. Mediterranean populations have traditionally used olive oil not only in nutrition but also in cosmetics, including skincare. In this study, the phenolic profile-composed of twelve compounds altogether, including the secoiridoids oleocanthal (OCAL) and oleacein (OCEIN)-of extra virgin olive oil (EVOO) from autochthonous cultivars from Croatia was determined using 1H qNMR spectroscopy and HPLC-DAD analysis, and its biological activity was investigated in melanoma cell lines. The EVOO with the highest OCEIN content had the strongest anti-cancer activity in A375 melanoma cells and the least toxic effect on the non-cancerous keratocyte cell line (HaCaT). On the other hand, pure OCAL was shown to be more effective and safer than pure OCEIN. Post-treatment with any of the EVOO phenolic extracts (EVOO-PEs) enhanced the anti-cancer effect of the anti-cancerous drug dacarbazine (DTIC) applied in pre-treatment, while they did not compromise the viability of non-cancerous cells. The metastatic melanoma A375M cell line was almost unresponsive to the EVOO-PEs themselves, as well as to pure OCEIN and OCAL. Our results demonstrate that olive oils and/or their compounds may have a potentially beneficial effect on melanoma treatment. However, their usage can be detrimental or futile, especially in healthy cells, due to inadequately applied concentrations/combinations or the presence of resistant cells.


Asunto(s)
Iridoides , Melanoma , Dacarbazina , Humanos , Iridoides/farmacología , Melanoma/tratamiento farmacológico , Aceite de Oliva/química , Aceites de Plantas/química , Aceites de Plantas/farmacología
6.
Molecules ; 27(11)2022 May 26.
Artículo en Inglés | MEDLINE | ID: covidwho-1869715

RESUMEN

Impaired autophagy, responsible for increased inflammation, constitutes a risk factor for the more severe COVID-19 outcomes. Spermidine (SPD) is a known autophagy modulator and supplementation for COVID-19 risk groups (including the elderly) is recommended. However, information on the modulatory effects of eugenol (EUG) is scarce. Therefore, the effects of SPD and EUG, both singularly and in combination, on autophagy were investigated using different cell lines (HBEpiC, SHSY5Y, HUVEC, Caco-2, L929 and U937). SPD (0.3 mM), EUG (0.2 mM) and 0.3 mM SPD + 0.2 mM EUG, significantly increased autophagy using the hallmark measure of LC3-II protein accumulation in the cell lines without cytotoxic effects. Using Caco-2 cells as a model, several crucial autophagy proteins were upregulated at all stages of autophagic flux in response to the treatments. This effect was verified by the activation/differentiation and migration of U937 monocytes in a three-dimensional reconstituted intestinal model (Caco-2, L929 and U937 cells). Comparable benefits of SPD, EUG and SPD + EUG in inducing autophagy were shown by the protection of Caco-2 and L929 cells against lipopolysaccharide-induced inflammation. SPD + EUG is an innovative dual therapy capable of stimulating autophagy and reducing inflammation in vitro and could show promise for COVID-19 risk groups.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Syzygium , Anciano , Autofagia , Células CACO-2 , Eugenol/farmacología , Humanos , Inflamación , Monocitos , Aceites de Plantas , Espermidina/farmacología , Triticum
7.
BMC Vet Res ; 18(1): 90, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1789121

RESUMEN

BACKGROUND: Infectious bronchitis virus (IBV) leads to huge economic losses in the poultry industry worldwide. The high levels of mutations of IBV render vaccines partially protective. Therefore, it is urgent to explore an effective antiviral drug or agent. The present study aimed to investigate the in vivo anti-IBV activity of a mixture of plant essential oils (PEO) of cinnamaldehyde (CA) and glycerol monolaurate (GML), designated as Jin-Jing-Zi. RESULTS: The antiviral effects were evaluated by clinical signs, viral loads, immune organ indices, antibody levels, and cytokine levels. The infection rates in the PEO-M (middle dose) and PEO-H (high dose) groups were significantly lower than those in the prevention, positive drug, and PEO-L (low dose) groups. The cure rates in the PEO-M and PEO-H groups were significantly higher than those in the prevention, positive drug, and PEO-L groups, and the PEO-M group had the highest cure rate of 92.31%. The symptom scores and IBV mRNA expression levels were significantly reduced in the PEO-M group. PEO significantly improved the immune organ indices and IBV-specific antibody titers of infected chickens. The anti-inflammatory factor levels of IL-4 and IFN-γ in the PEO-M group maintained high concentrations for a long time. The IL-6 levels in the PEO-M group were lower than those in prevention, positive drug, and PEO-L groups. CONCLUSION: The PEO had remarkable inhibition against IBV and the PEO acts by inhibiting virus multiplication and promoting immune function, suggesting that the PEO has great potential as a novel anti-IBV agent for inhibiting IBV infection.


Asunto(s)
Infecciones por Coronavirus , Virus de la Bronquitis Infecciosa , Aceites Volátiles , Enfermedades de las Aves de Corral , Vacunas Virales , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Pollos , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico , Aceites de Plantas/farmacología , Aceites de Plantas/uso terapéutico , Enfermedades de las Aves de Corral/tratamiento farmacológico , Enfermedades de las Aves de Corral/prevención & control , Vacunas Virales/uso terapéutico
8.
Microbiol Spectr ; 9(3): e0109121, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1591660

RESUMEN

Chemical methods of virus inactivation are used routinely to prevent viral transmission in both a personal hygiene capacity but also in at-risk environments like hospitals. Several virucidal products exist, including hand soaps, gels, and surface disinfectants. Resin acids, which can be derived from tall oil, produced from trees, have been shown to exhibit antibacterial activity. However, whether these products or their derivatives have virucidal activity is unknown. Here, we assessed the capacity of rosin soap to inactivate a panel of pathogenic mammalian viruses in vitro. We show that rosin soap can inactivate human enveloped viruses: influenza A virus (IAV), respiratory syncytial virus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For IAV, rosin soap could provide a 100,000-fold reduction in infectivity. However, rosin soap failed to affect the nonenveloped encephalomyocarditis virus (EMCV). The inhibitory effect of rosin soap against IAV infectivity was dependent on its concentration but not on the incubation time or temperature. In all, we demonstrate a novel chemical inactivation method against enveloped viruses, which could be of use for preventing virus infections in certain settings. IMPORTANCE Viruses remain a significant cause of human disease and death, most notably illustrated through the current coronavirus disease 2019 (COVID-19) pandemic. Control of virus infection continues to pose a significant global health challenge to the human population. Viruses can spread through multiple routes, including via environmental and surface contamination, where viruses can remain infectious for days. Methods for inactivating viruses on such surfaces may help mitigate infection. Here, we present evidence identifying a novel virucidal product, rosin soap, which is produced from tall oil from coniferous trees. Rosin soap was able to rapidly and potently inactivate influenza virus and other enveloped viruses.


Asunto(s)
Antivirales/farmacología , Resinas de Plantas/farmacología , Jabones/farmacología , Antivirales/análisis , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/crecimiento & desarrollo , Aceites de Plantas/análisis , Aceites de Plantas/farmacología , Resinas de Plantas/análisis , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/crecimiento & desarrollo , Jabones/análisis , Inactivación de Virus/efectos de los fármacos
9.
Mol Cell Biochem ; 477(1): 225-240, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: covidwho-1469743

RESUMEN

Severe acute respiratory syndrome-coronavirus-2 (COVID-19) virus uses Angiotensin-Converting Enzyme 2 (ACE2) as a gateway for their entry into the human body. The ACE2 with cleaved products have emerged as major contributing factors to multiple physiological functions and pathogenic complications leading to the clinical consequences of the COVID-19 infection Decreased ACE2 expression restricts the viral entry into the human cells and reduces the viral load. COVID-19 infection reduces the ACE2 expression and induces post-COVID-19 complications like pneumonia and lung injury. The modulation of the ACE2-Ang (1-7)-Mas (AAM) axis is also being explored as a modality to treat post-COVID-19 complications. Evidence indicates that specific food components may modulate the AAM axis. The variations in the susceptibility to COVID-19 infection and the post-COVID its complications are being correlated with varied dietary habits. Some of the food substances have emerged to have supportive roles in treating post-COVID-19 complications and are being considered as adjuvants to the COVID-19 therapy. It is possible that some of their active ingredients may emerge as the direct treatment for the COVID-19.


Asunto(s)
Angiotensina I/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/complicaciones , COVID-19/dietoterapia , Fragmentos de Péptidos/metabolismo , Proto-Oncogenes Mas/metabolismo , Enfermedades Cardiovasculares/patología , Enfermedades Cardiovasculares/virología , Proteínas en la Dieta/farmacología , Flavonoides/farmacología , Humanos , Pulmón/patología , Pulmón/virología , Aceites de Plantas/farmacología , Polifenoles/farmacología , Terpenos/farmacología , Internalización del Virus , Vitaminas/farmacología
10.
J Med Virol ; 94(1): 119-130, 2022 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1359797

RESUMEN

This study investigates the effect of the nanostructure of squalene in the form of microemulsion on COVID-19 patients. In this blinded clinical trial, a comparison was made between the efficacy of squalene treatment and controls. A total of 30 COVID-19 patients admitted to the emergency department, and the infection ward was equally allocated to case (n = 15) and control (n = 15) groups according to their age and underlying diseases. The baseline characteristics of subjects, including age, gender, time of treatment onset, underlying condition, white blood cells count, and lymphocyte count were similar (p < 0.05). Baseline laboratory tests and computed tomography (CT) scans were performed for the study groups. The treatment group received 5 mg of intravenous squalene twice a day and standard treatment for 6 days, while controls received only standard treatment. After 6 days of treatment, clinical and CT scan changes were evaluated and compared in intervention and control groups. The need for oxygen therapy (p = 0.020), 2 days of no fever (p = 0.025), cough alleviation (p = 0.010), and lung high-resolution computed tomography improvement (p = 0.033) were significantly different between cases and controls within 7 days of admission. No adverse effects were observed in the treatment group. Our data suggest that squalene could be considered as a potential treatment for COVID-19, and further studies are required to confirm the results.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Escualeno/uso terapéutico , Antivirales/administración & dosificación , Antivirales/efectos adversos , Antivirales/química , Antivirales/uso terapéutico , Emulsiones , Femenino , Humanos , Masculino , Persona de Mediana Edad , Aceites de Plantas/química , Escualeno/administración & dosificación , Escualeno/efectos adversos , Escualeno/química , Resultado del Tratamiento
11.
J Hazard Mater ; 420: 126570, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1293967

RESUMEN

At present, it is very common to wear mask outdoors in order to avoid coronavirus disease 19 (COVID-19) infection. However, this leads to the formation of numerous plastic wastes that threaten humans and ecosystem. Against this major background, a novel co-pyrolysis coupled chemical vapor deposition (CVD) strategy is proposed to systematically convert mask and heavy fraction of bio-oil (HB) into biochar, bio-oil, and three-dimensional graphene films (3DGFs) is proposed. The biochar exhibits high higher heating value (HHV) (33.22-33.75 MJ/kg) and low ash content (2.34%), which is obviously superior to that of the walnut shell and anthracite coal. The bio-oil contains rich aromatic components, such as 1,2-dimethylbenzene and 2-methylnaphthalene, which can be used as chemical feedstock for insecticides. Furthermore, the 3DGF800 has a wide range of applications in the fields of oil spill cleanup and oil/water separation according to its fire resistance, high absorbability (40-89 g g-1) and long-term cycling stability. This research sheds new light on converting plastic wastes and industrial by-products into high added-value chemicals.


Asunto(s)
COVID-19 , Grafito , Biocombustibles/análisis , Carbón Orgánico , Ecosistema , Residuos Peligrosos , Calor , Humanos , Aceites de Plantas , Polifenoles , SARS-CoV-2
12.
Arch Pharm Res ; 44(5): 439-474, 2021 May.
Artículo en Inglés | MEDLINE | ID: covidwho-1202014

RESUMEN

Artemisia and its allied species have been employed for conventional medicine in the Northern temperate regions of North America, Europe, and Asia for the treatments of digestive problems, morning sickness, irregular menstrual cycle, typhoid, epilepsy, renal problems, bronchitis malaria, etc. The multidisciplinary use of artemisia species has various other health benefits that are related to its traditional and modern pharmaceutical perspectives. The main objective of this review is to evaluate the traditional, modern, biological as well as pharmacological use of the essential oil and herbal extracts of Artemisia nilagirica, Artemisia parviflora, and other allied species of Artemisia. It also discusses the botanical circulation and its phytochemical constituents viz disaccharides, polysaccharides, glycosides, saponins, terpenoids, flavonoids, and carotenoids. The plants have different biological importance like antiparasitic, antimalarial, antihyperlipidemic, antiasthmatic, antiepileptic, antitubercular, antihypertensive, antidiabetic, anxiolytic, antiemetic, antidepressant, anticancer, hepatoprotective, gastroprotective, insecticidal, antiviral activities, and also against COVID-19. Toxicological studies showed that the plants at a low dose and short duration are non or low-toxic. In contrast, a high dose at 3 g/kg and for a longer duration can cause toxicity like rapid respiration, neurotoxicity, reproductive toxicity, etc. However, further in-depth studies are needed to determine the medicinal uses, clinical efficacy and safety are crucial next steps.


Asunto(s)
Artemisia , Fitoterapia/métodos , Extractos Vegetales/farmacología , Antivirales/farmacología , Antivirales/uso terapéutico , Artemisia/química , Humanos , Medicina Tradicional , Extractos Vegetales/uso terapéutico , Aceites de Plantas/farmacología , Aceites de Plantas/uso terapéutico , Tratamiento Farmacológico de COVID-19
13.
Res Vet Sci ; 137: 44-47, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: covidwho-1199055

RESUMEN

Feline infectious peritonitis (FIP) is a fatal systemic disease of felids caused by a Coronavirus (CoV) (FIPV). In spite of its clinical relevance and impact on feline health, currently the therapeutic possibilities for treatment of FIP in cats are limited. The emergence of the pandemic Severe Respiratory Syndrome (SARS) coronavirus (CoV) type 2 (SARS-CoV-2), etiological agent of the 2019 Coronavirus Disease (COVID-19), able to infect a broad spectrum of animal species including cats, triggered the interest for the development of novel molecules with antiviral activity for treatment of CoV infections in humans and animals. Essential oils (EOs) have raised significant attention for their antiviral properties integrating and, in some cases, replacing conventional drugs. Thymus vulgaris EO (TEO) has been previously shown to be effective against several RNA viruses including CoVs. In the present study the antiviral efficacy of TEO against FIPV was evaluated in vitro. TEO at 27 µg/ml was able to inhibit virus replication with a significant reduction of 2 log10 TCID50/50 µl. Moreover, virucidal activity was tested using TEO at 27 and 270 µg/ml, over the cytotoxic threshold, determining a reduction of viral titre as high as 3.25 log10 TCID50/50 µl up to 1 h of time contact. These results open several perspectives in terms of future applications and therapeutic possibilities for coronaviruses considering that FIPV infection in cats could be a potential model for the study of antivirals against CoVs.


Asunto(s)
Coronavirus Felino/efectos de los fármacos , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Thymus (Planta)/química , Replicación Viral/efectos de los fármacos , Animales , Gatos , Línea Celular , Humanos , Aceites Volátiles/química , Aceites de Plantas/química
14.
Int J Environ Res Public Health ; 17(20)2020 10 19.
Artículo en Inglés | MEDLINE | ID: covidwho-1006216

RESUMEN

(1) Background: The COVID-19 pandemic and the imposition of strict but necessary measures to prevent the spread of the new coronavirus have been, and still are, major stress factors for adults, children, and adolescents. Stress harms human health as it creates free radicals in the human body. According to various recent studies, volatile oils from various aromatic plants have a high content of antioxidants and antimicrobial compounds. An external supply of antioxidants is required to destroy these free radicals. The main purpose of this paper is to create a yoghurt with high antioxidant capacity, using only raw materials from Romania; (2) Methods: The bioactive components used to enrich the cow milk yoghurt were extracted as volatile oils out of four aromatic plants: basil, mint, lavender and fennel. Initially, the compounds were extracted to determine the antioxidant capacity, and subsequently, the antioxidant activity of the yoghurt was determined. The 2,2-diphenyl-1-picrylhy-drazyl (DPPH) method was used to determine the antioxidant activity; (3) Results: The results show that cow milk yoghurt enhanced with volatile oils of basil, lavender, mint and fennel, encapsulated in sodium alginate has an antioxidant and antimicrobial effect as a staple food with multiple effects in increasing the body's immunity. The antioxidant activity proved to be considerably higher than the control sample. The highest antioxidant activity was obtained on the first day of the analysis, decreasing onwards to measurements taken on days 10 and 20. The cow milk yoghurt enriched with volatile basil oil obtained the best results; (4) Conclusions: The paper shows that yoghurts with a high antioxidant capacity were obtained, using only raw materials from Romania. A healthy diet, compliance with safety conditions and finding appropriate and safe methods to increase the body's immunity is a good alternative to a major transition through harder times, such as pandemics. The creation of food products that include natural antioxidant compounds combines both the current great possibility of developing food production in Romania and the prevention and reduction of the effects caused by pandemic stress in the human body.


Asunto(s)
Antioxidantes/uso terapéutico , Sistema Inmunológico , Aceites de Plantas/uso terapéutico , Yogur , Alginatos , Animales , Betacoronavirus , COVID-19 , Infecciones por Coronavirus , Humanos , Pandemias , Neumonía Viral , Rumanía , SARS-CoV-2 , Estrés Psicológico/inmunología
15.
Mater Sci Eng C Mater Biol Appl ; 118: 111534, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: covidwho-779471

RESUMEN

The very recent Covid-19 pandemic has made the need to understand biocompatible polymers as support material in drug delivery systems and controlled release clearer, especially for organo-hydrogels. This study aims to synthesize various new polymeric materials called gels, hydrogels, and organo-hydrogels according to the monomer used and to investigate their use as drug release systems. The agar-glycerol (AG) pair was used to synthesize the polymers, N, N, methylene bisacrylamide (MBA, m) and glutaraldehyde (GA, g) were used as cross-linkers and peppermint oil (PmO) was included to obtain the organo-hydrogels. Therefore, one AG gel and two p (AG-m) and p (GA-g) hydrogels were synthesized within the scope of the study. Six different organo-hydrogels based on p(AG-m-PmO) or p (AG-g-PmO) were also synthesized by varying the amount of peppermint oil. Paracetamol and carboplatin were selected as the sample drugs. Synthesized gels, hydrogels and organo-hydrogels were characterized by FTIR and SEM analysis. Additionally, swelling behaviors of the synthesized gels were investigated in different media (ID water, tap water, ethanol, acetone, ethanol/ID water (1:1), acetone/ID water (1:1) and gasoline) and at different pHs. Moreover, it was determined that organo-hydrogels were blood compatible and had antioxidant properties based on hemolysis, blood clotting and antioxidant analysis. Therefore, the release of paracetamol (a known antipyretic-painkiller, recommended and used in the treatment of Covid-19) and carboplatin (widely used in cancer treatment) were studied. Evidently, as the amount of PMO oil increases, the -OH groups in organo-hydrogels will increase and the chemical and physical bonding rates will increase; therefore it was observed that increasing peppermint oil in the organo-hydrogels structure to 0.3 mL stimulated the release of the drugs. For instance, maximum paracetamol release amount from p(AG-g-PmO) and p(AG-m-PmO) organo-hydrogels was calculated to be 72.3% at pH 7.4 and 69.8% at pH 2.0, respectively. The maximum carboplatin release amount from p(AG-g-PmO) and p(AG-m-PmO) organo-hydrogels was calculated to be 99.7% at pH 7.4 and 100% at pH 7.4, respectively. It was concluded that the synthesized organo-hydrogels might easily be used as drug carrier and controlled drug release materials.


Asunto(s)
Agar/síntesis química , Portadores de Fármacos/química , Liberación de Fármacos , Glicerol/síntesis química , Hidrogeles/síntesis química , Aceites de Plantas/síntesis química , Acetaminofén/farmacología , Antioxidantes/análisis , Coagulación Sanguínea , Carboplatino/farmacología , Hemólisis , Humanos , Concentración de Iones de Hidrógeno , Cinética , Mentha piperita , Fenoles/análisis , Espectroscopía Infrarroja por Transformada de Fourier
16.
J Biomol Struct Dyn ; 39(13): 4610-4617, 2021 08.
Artículo en Inglés | MEDLINE | ID: covidwho-610641

RESUMEN

Statistics show alarming numbers of infected and killed in the world, caused by the Covid-19 pandemic, which still doesn't have a specific treatment and effective in combating all efforts to seek treatments and medications against this disease. Natural products are of relevant interest in the search for new drugs. Thus, Buriti oil (Mauritia flexuosa L.) is a natural product extracted from the fruit of the palm and is quite common in the legal Amazon region, Brazil. In the present work, the anti-Covid-19 biological activity of some constituents of Buriti oil was investigated using in silico methods of Molecular Docking and Molecular Dynamics Simulations. The main results of Molecular Docking revealed favorable interaction energies in the formation of the 2GTB peptidase complex (main peptidase of SARS-CoV) with the 13-cis-ß-carotene ligands (ΔGbind = -10.23Kcal mol-1), 9-cis -ß-carotene (ΔGbind = -9.82Kcal mol-1), and α-carotene (ΔGbind = -8.34Kcal mol-1). Molecular Dynamics simulations demonstrated considerable interaction for these ligands with emphasis on α-carotene. Such theoretical results encourage and enable a direction for experimental studies in vitro and in vivo, essential in the development of new drugs with enzymatic inhibitory action for Covid-19.Communicated by Ramaswamy H. Sarma.


Asunto(s)
COVID-19 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Carotenoides , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Pandemias , Péptido Hidrolasas , Aceites de Plantas , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA